6,733 research outputs found

    Inclusive jet cross section measurement at D0

    Get PDF
    We present a new preliminary measurement of the inclusive jet cross section in pp-bar collisions based on a integrated luminosity of about 0.8 fb-1. The data were acquired using the D0 detector between 2002 and 2005. Jets are reconstructed using an iterative cone algorithm with radius R_cone = 0.7. The inclusive jet cross section is presented as a function of transverse jet momentum and rapidity. Predictions from perturbative QCD in next-to-leading order, plus threshold corrections in 2-loop accuracy describe the shape in the transverse jet momentum.Comment: 4 pages, 4 figures; proceedings of the DIS 2006 worksho

    D0 QCD studies

    Full text link
    A number of recent measurements from D0 that can be used to constrain parton distributions and tune QCD Monte Carlo models are presented. The selection includes W charge asymmetry, Z+jet event properties, dijet azimuthal decorrelations and the inclusive jet cross section.Comment: 4 pages, 4 figures; proceedings of the DIS 2006 worksho

    Physics of Proximity Josephson Sensor

    Full text link
    We study the proximity Josephson sensor (PJS) in both bolometric and calorimetric operation and optimize it for different temperature ranges between 25 mK and a few Kelvin. We investigate how the radiation power is absorbed in the sensor and find that the irradiated sensor is typically in a weak nonequilibrium state. We show in detail how the proximity of the superconductors affects the device response: for example via changes in electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2: Addition of a new section discussing the radiation coupling to the device, several minor change

    Absorption of heat into a superconductor-normal metal-superconductor junction from a fluctuating environment

    Full text link
    We study a diffusive superconductor-normal metal-superconductor junction in an environment with intrinsic incoherent fluctuations which couple to the junction through an electromagnetic field. When the temperature of the junction differs from that of the environment, this coupling leads to an energy transfer between the two systems, taking the junction out of equilibrium. We describe this effect in the linear response regime and show that the change in the supercurrent induced by this coupling leads to qualitative changes in the current-phase relation and for a certain range of parameters, an increase in the critical current of the junction. Besides normal metals, similar effects can be expected also in other conducting weak links.Comment: 5 pages, 4 figures - supplementary information included: 3 pages, 1 figure; minor modifications to the text and Fig. 2, added Ref. 1

    Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures

    Full text link
    Using the nonequilibrium theory of superconductivity with the tunnel Hamiltonian, we consider a mesoscopic NISINISIN heterostructure, i.e., a structure consisting of five intermittent normal-metal (N) and superconducting (S) regions separated by insulating tunnel barriers (I). Applying the bias voltage between the outer normal electrodes one can drive the central N island very far from equilibrium. Depending on the resistance ratio of outer and inner tunnel junctions, one can realize either effective electron cooling in the central N island or create highly nonequilibrium energy distributions of electrons in both S and N islands. These distributions exhibit multiple peaks at a distance of integer multiples of the superconducting chemical potential. In the latter case the superconducting gap in the S islands is strongly suppressed as compared to its equilibrium value

    Developing LCA-based benchmarks for sustainable consumption - for and with users

    Get PDF
    This article presents the development process of a consumer-oriented, illustrative benchmarking tool enabling consumers to use the results of environmental life cycle assessment (LCA) to make informed decisions. Active and environmentally conscious consumers and environmental communicators were identified as key target groups for this type of information. A brochure presenting the benchmarking tool was developed as an participatory, iterative process involving consumer focus groups, stakeholder workshops and questionnaire-based feedback. In addition to learning what works and what does not, detailed suggestions on improved wording and figures were obtained, as well as a wealth of ideas for future applications

    Cellulose Fibre-Reinforced Biofoam for Structural Applications

    Get PDF
    Traditionally, polymers and macromolecular components used in the foam industry are mostly derived from petroleum. The current transition to a bio-economy creates demand for the use of more renewable feedstocks. Soybean oil is a vegetable oil, composed mainly of triglycerides, that is suitable material for foam production. In this study, acrylated epoxidized soybean oil and variable amounts of cellulose fibres were used in the production of bio-based foam. The developed macroporous bio-based architectures were characterised by several techniques, including porosity measurements, nanoindentation testing, scanning electron microscopy, and thermogravimetric analysis. It was found that the introduction of cellulose fibres during the foaming process was necessary to create the three-dimensional polymer foams. Using cellulose fibres has potential as a foam stabiliser because it obstructs the drainage of liquid from the film region in these gas-oil interfaces while simultaneously acting as a reinforcing agent in the polymer foam. The resulting foams possessed a porosity of approximately 56%, and the incorporation of cellulose fibres did not affect thermal behaviour. Scanning electron micrographs showed randomly oriented pores with irregular shapes and non-uniform pore size throughout the samples

    Neptunium(V) transport in granitic rock : A laboratory scale study on the influence of bentonite colloids

    Get PDF
    In the present study neptunium(V) uptake by crystalline granitic rock (Kuru Grey granite) and the role of stable and mobile bentonite colloids (MX-80) on the migration of neptunium(V) was investigated. Two different experimental setups were utilized, batch-type experiments under stagnant conditions and column experiments under flowing water conditions. The uptake of 10(-6) M neptunium(V) by 40 g/L crushed granite in 10 mM NaClO4 was found to be pH-dependent, whereas neptunium(V) uptake by MX-80 bentonite colloids (0.08-0.8 g/L) was pH-independent up to a pH-value of approximately 11. Column experiments were conducted in the presence and absence of colloids at two pH values (pH = 8 and 10) and two flow rates (0.3 and 0.8 mL/h) in 10 mM NaClO4. The injected neptunium(V) concentration was 2x10(-4) M and the colloid concentration ranged from 0.08 to 0.32 g/L. The properties of the flow field in the columns were investigated with a conservative chloride tracer, at the same two flow rates of 0.8 and 0.3 mL/h. The resulting breakthrough curves were modeled using the analytical solution of advection-matrix diffusion equation. A tailing of neptunium(V) breakthrough curves in comparison to the conservative tracer was observed, which could be explained by a slightly higher retardation of neptunium(V) in the column caused by sorption on the granite. The sorption was in general lower at pH 8 than at pH 10. In addition, the tailing was almost identical in the absence and presence of MX-80 bentonite colloids, implying that the influence of colloids on the neptunium(V) mobility is almost negligible.Peer reviewe
    • …
    corecore